For Data Team Success, What You Do is Less Important Than How You Do It

In todayโ€™s on-demand economy, the ability to derive business value from data is the secret sauce that will separate the winners from the losers.ย  Data-driven decision making is now more critical than ever.ย  Analytics could mean the difference between finding the right mix of strategic moves or falling behind.ย  In fact,ย Forrester Researchย predicted that insight-driven companies would grow seven to 10 times faster than the global GDP through 2021.

Most enterprise companies recognize the need to be data-driven, yet 60% of data projects fail to move past preliminary stages, and 87% of science projects never make it to production.ย  More surprisingly the number of data-driven companies has actually fallen from 37% to 31% since 2017, despite increased investment, according to Gartner.

What gives?

Becoming data-driven is hard and data teams are suffering.ย  They are caught between the competing demands of data consumers, data providers, and supporting teams.ย  Typically, data consumers live in an Amazon world and expect trusted, original insight on-demand. Yet data providers often send inaccurate, late, or error-prone data sets.ย  The flawless collaboration and production required from teams in other parts of the organization often just isnโ€™t there.

Taken together, the need to manage complex toolchains and data, as well as collaborate with other organizations, roles, locations, and data centers, saps the data teamโ€™s time.ย  In fact, most data teams spend more time fixing errors and addressing operational issues than innovating and providing business value.ย  According to Gartner, only 22% of a data teamโ€™s time is spent on new initiatives and innovation.ย  As a result, many data teams are not meeting expectations, or worse, are beaten down and disempowered.

image-36

Figure 1: According to Gartner, only 22% of a data team’s time is spent on new initiatives and innovation.

Focus on Operations, Not the Next Feature

Data teams can learn important lessons from other industries.ย  According to management guru Dr. Edward Deming, 94% of problems are โ€œcommon cause variation,โ€ and to decrease this variation you must focus on the system or process, not look for a person to blame. ย  A relentless process focus has led to dramatic improvements in the auto industry, where lean manufacturing principles have led to dramatically higher levels of productivity and quality.ย  Or more recently in software development, the principles of DevOps have enabled companies to perform millions of software releases each year.ย ย 

 

โ€œWe realized that the true problem, the true difficulty, and where the greatest potential is โ€“ is buildingย the machine that makes the machine. In other words, itโ€™s building the factory. Iโ€™m really thinking of the factory like a product.โ€ย  – Elon Musk

 

This mind shift was more recently highlighted by Elon Musk who said โ€œwe realized the true problem, the true difficulty, and where the greatest potential is โ€“ is buildingย the machine that builds the machine.ย  In other words, itโ€™s building the factory.ย  Iโ€™m really thinking of the factory like a product.โ€ ย  Successful data organizations are also wise to think of their data pipelines like a factory where quality and efficiency must be managed.ย  But how can a data team shift its focus from the next big tool, technology or data feature to the people and process?

 

A Solution to the Suffering

In data analytics, DataOps provides the path forward.ย  DataOps aligns the people, processes, and technologies of the data analytics organization. Supported by automation, it puts the focus on the underlying systems and managing the โ€˜data factory.โ€™ย  Companies that follow DataOps principles spend less time worrying about the next model, algorithm, tool, visualization or even the data itself, but instead focus on how to develop, deploy, test, monitor, collaborate and measure their analytic operations.

By doing so, these companies realize multiple, simultaneous benefits.

  • They experience orders of magnitude improvements in cycle time.ย  They are able to deploy new features quickly and confidently, often improving from months/weeks to days/hours.
  • They lower or even eliminate costly and embarrassing errors, enabling them to build a strong culture of trust with their data customers.
  • They dramatically increase productivity.ย  Better intra- and inter-team collaboration means less time spent on meetings and bureaucracy.

All of this creates the time and space for the data team to focus on what they signed up for in the first place โ€“ creating innovative analytics and delivering business value.ย Innovation
Figure 2:ย  DataOps reduces time spent on errors and operational tasks and increases innovation.

 

Data organizations that neglect to modernize their processes, risk being left behind in an increasingly on-demand economy.ย  DataOps enables teams to reclaim control of their data pipelines, reduce time- and soul-sucking errors and minimize the time from new ideas to the deployment of working analytics.

In any economy, but especially in challenging times, the most innovative companies will be those that can quickly adapt to rapidly evolving market conditions. The data teams that adopt DataOps and produce robust and accurate analytics more rapidly than their peers will power strategic decision-making that sustains a competitive advantage.

Sign-Up for our Newsletter

Get the latest straight into your inbox

Open Source Data Observability Software

DataOps Observability: Monitor every Data Journey in an enterprise, from source to customer value, and find errors fast! [Open Source, Enterprise]

DataOps Data Quality TestGen: Simple, Fast Data Quality Test Generation and Execution. Trust, but verify your data! [Open Source, Enterprise]

DataOps Software

DataOps Automation: Orchestrate and automate your data toolchain to deliver insight with few errors and a high rate of change. [Enterprise]

recipes for dataops success

DataKitchen Consulting Services


Assessments

Identify obstacles to remove and opportunities to grow

DataOps Consulting, Coaching, and Transformation

Deliver faster and eliminate errors

DataOps Training

Educate, align, and mobilize

Commercial Pharma Agile Data Warehouse

Get trusted data and fast changes from your warehouse

 

dataops-cookbook-download

DataOps Learning and Background Resources


DataOps Journey FAQ
DataOps Observability basics
Data Journey Manifesto
Why it matters!
DataOps FAQ
All the basics of DataOps
DataOps 101 Training
Get certified in DataOps
Maturity Model Assessment
Assess your DataOps Readiness
DataOps Manifesto
Thirty thousand signatures can't be wrong!

 

DataKitchen Basics


About DataKitchen

All the basics on DataKitchen

DataKitchen Team

Who we are; Why we are the DataOps experts

Careers

Come join us!

Contact

How to connect with DataKitchen

 

DataKitchen News


Newsroom

Hear the latest from DataKitchen

Events

See DataKitchen live!

Partners

See how partners are using our Products

 

Monitor every Data Journey in an enterprise, from source to customer value, in development and production.

Simple, Fast Data Quality Test Generation and Execution. Your Data Journey starts with verifying that you can trust your data.

Orchestrate and automate your data toolchain to deliver insight with few errors and a high rate of change.