Deliver ML and AI Models at Scale with ModelOps

Data scientists work tirelessly to build and train a model then face the daunting challenge of deploying it into production. The model itself is only a fraction of the overall ML system.

Data scientists work tirelessly to build and train a model then face the daunting challenge of deploying it into production. The model itself is only a fraction of the overall ML system. Moving a model from development into operations involves provisioning infrastructure, installing and configuring software, preparing data, and testing both code and data. With manual processes, these steps can require several months of effort. Integration with existing operations is also challenging. Gartner recently reported that theย complexity of solution integration with existing infrastructureย was named as a top barrier to AI implementations.

Software applications are typically code-driven. Developers deploy software and then they may not touch it again until thereโ€™s a requirement to fix a bug or add a new feature. Not true for ML systems. Model performance is affected by many factors, including changes in data, users, ML systems, performance requirements or the external environment. Model updates are code, data and environment-driven. Once a model is in production, it needs to be actively monitored for any degradation in performance. Without automation, it can take weeks to detect that a modelโ€™s accuracy has deteriorated and several additional weeks to retrain the model with the newest data or remediate issues affecting model performance.

Figure 1: Model performance decays over time due to changing data, code, users, system environment and other external factors. Machine learning models must be monitored in production and retrained or redeveloped periodically. (Source: Forrester)

Imagine creating, deploying and managing ten models. Or hundreds. Businesses may wish to turn to data science models to gain competitive advantage, but the onerous workflow processes related to model development, deployment and maintenance often get in the way. In the coming years, ML systems will serve as a major differentiator for companies. Markets will be led by the most agile organizations, who can train, deploy, monitor and update machine-learning systems in the shortest amount of time. Agile companies will be adept at putting new ideas into action and quickly altering course when business conditions change.

ML Agility

ModelOps, also known asย MLOps, is an application ofย DataOpsย principles and automation to machine learning systems. ModelOps turns data science workflows into robust, repeatable processes executed in minimal time and with virtually zero errors. When you use the DataKitchen DataOps Platform to implement ModelOps, your end-to-end machine-learning lifecycle is optimized for agility and quality. A DataKitchen ModelOps workflow includes:

  • Self-Service Sandboxesย – An environment instantiated (and deleted) on-demand that includes everything a data scientist needs to create, train, test and deploy machine-learning models: complete toolchain, security vault, prepackaged data sets, role-based access control for teams, integration with workflow management, and a Kitchen workspace that ties it all together as a unified environment.
  • Continuous Deploymentย – Building, integrating, testing and deploying ML models and ML systems as an automated software-controlled process that can be executed on-demand and complete in minutes or hours.
  • Meta-Orchestrationย – a hierarchy of orchestrations. Automated execution of complex, multi-step data pipelines that span data centers and varied toolchains.
  • Automated Testingย – Testing in all phases of orchestration from data ingestion to transformation to model execution to delivery of polished visualizations. The DataKitchen Platform offers a single test environment encompassing heterogeneous toolchains.
  • Continuous Monitoringย – Repeated evaluation of model accuracy and efficacy in production with automated orchestrations or alerts when results meet statistical criteria.
  • Continuous Governanceย – Governance workflows as repeatable, verifiable orchestrations implemented using governance-as-code automation.

ModelOps as a Competitive Advantage

Many data science professionals believe that models by themselves can provide competitive differentiation. Machine learning and AI will offer ways for companies to gain competitive advantage. What many fail to understand is that the organizational workflows related to ML model creation, deployment, monitoring and management will serve as an even greater point of competitive differentiation. Companies interested in machine learning and AI will hire smart data scientists, but not every company will employ them productively. The enterprises that implement ModelOps will be capable of iterating and updating models with far greater agility. Model agility translates into business agility. Data teams that embrace ModelOps with automated platforms like the DataKitchen DataOps Platform will be better able to develop agile business processes and emerge as market leaders.

 

Sign-Up for our Newsletter

Get the latest straight into your inbox

Open Source Data Observability Software

DataOps Observability: Monitor every Data Journey in an enterprise, from source to customer value, and find errors fast! [Open Source, Enterprise]

DataOps Data Quality TestGen: Simple, Fast Data Quality Test Generation and Execution. Trust, but verify your data! [Open Source, Enterprise]

DataOps Software

DataOps Automation: Orchestrate and automate your data toolchain to deliver insight with few errors and a high rate of change. [Enterprise]

recipes for dataops success

DataKitchen Consulting Services


Assessments

Identify obstacles to remove and opportunities to grow

DataOps Consulting, Coaching, and Transformation

Deliver faster and eliminate errors

DataOps Training

Educate, align, and mobilize

Commercial Pharma Agile Data Warehouse

Get trusted data and fast changes from your warehouse

 

dataops-cookbook-download

DataOps Learning and Background Resources


DataOps Journey FAQ
DataOps Observability basics
Data Journey Manifesto
Why it matters!
DataOps FAQ
All the basics of DataOps
DataOps 101 Training
Get certified in DataOps
Maturity Model Assessment
Assess your DataOps Readiness
DataOps Manifesto
Thirty thousand signatures can't be wrong!

 

DataKitchen Basics


About DataKitchen

All the basics on DataKitchen

DataKitchen Team

Who we are; Why we are the DataOps experts

Careers

Come join us!

Contact

How to connect with DataKitchen

 

DataKitchen News


Newsroom

Hear the latest from DataKitchen

Events

See DataKitchen live!

Partners

See how partners are using our Products

 

Monitor every Data Journey in an enterprise, from source to customer value, in development and production.

Simple, Fast Data Quality Test Generation and Execution. Your Data Journey starts with verifying that you can trust your data.

Orchestrate and automate your data toolchain to deliver insight with few errors and a high rate of change.