Large Language Models (LLMs) and Generative AI are all the rage right now but will only work for organizations that have a solid grasp on the quality of their data and the series of operations acting upon that data to augment the base LLM.
DataKitchen Resource Guide To Data Observability & DataOps
A list o the best Data (and Analytic) Observability & Data Journey – Ideas and Background Links
ON DEMAND WEBINAR: Beyond Data Observability
Do you have data quality issues, a complex technical environment, and a lack of visibility into production systems?
These challenges lead to poor quality analytics and frustrated end users. Getting your data reliable is a start, but many other problems arise even if your data could be better. And your customers don’t care where the problem is in your toolchain. They want to know when to get their trusted dashboard refreshed (for example).
The uncertainty of not knowing where data issues will crop up next and the tiresome game of ‘who’s to blame’ when pinpointing the failure. It’s more than just a ‘last mile’ problem in data observability. It’s about personalization for your customers. Demanding Data Consumers require a personalized level of Observability.
Navigating the Chaos of Unruly Data: Solutions for Data Teams
Data teams have out-of-control databases/data lakes, with many users and tools constantly changing data, many users and tools out of their control, and an unknown/uncontrolled ETL/ELT process with no data quality tests. As a result, they are left with the blame for bad data and have limited ways to affect the actions of others who are changing the data. They need help to quickly identify anomalies and problems in the data before someone finds it.
ON DEMAND WEBINAR: Data Observability Demo Day
This webinar discusses how to make embarrassing data errors a thing of the past.
We will start with how data engineers do not understand their data and have difficulty identifying problematic data records. We will also discuss how the vast majority of data engineers are so busy that they don’t know, or have time to write, tests to write to find data errors. We will finish with a demonstration of DataKitchen’s New DataOps Testgen Product.
That missing piece that connects data system expectations and reality is a ‘Data Journey.’ It is the missing piece of our data systems.
ON DEMAND WEBINAR: Automated Test Generation – Why Data Teams Need It
This webinar discusses how to make embarrassing data errors a thing of the past.
We will start with how data engineers do not understand their data and have difficulty identifying problematic data records. We will also discuss how the vast majority of data engineers are so busy that they don’t know, or have time to write, tests to write to find data errors. We will finish with a demonstration of DataKitchen’s New DataOps Testgen Product.
That missing piece that connects data system expectations and reality is a ‘Data Journey.’ It is the missing piece of our data systems.
The Ten Standard Tools To Develop Data Pipelines In Microsoft Azure
The Ten Standard Tools To Develop Data Pipelines In Microsoft Azure. Is it overkill? Paradox of choice? Or the right tool for the right job? We discuss.
The Syntax, Semantics, and Pragmatics Gap in Data Quality Validation Testing
What is the full range of data quality validation tests for data at rest and data in use? Linguistics provides an organizing principle: syntax, semantics, and pragmatics