Data observability extends beyond simple anomaly checking, offering deep insights into data health, dependencies, and the performance of data-intensive applications. This blog post introduces five critical use cases for data observability, each pivotal in maintaining the integrity and usability of data throughout its journey in any enterprise.
DataOps and Data Observability Education And Certification Offerings From DataKitchen
Dive into DataOps and Data Observabiity with DataKitchen’s expansive free training and certification offerings tailored for individual Data Analytics, Science, and Engineering contributors. From grasping the foundational principles through the free DataOps Cookbook, over 30,000 readers strong, to hands-on certification courses in DataOps, Data Observability, and Automation, each pathway illuminates critical skills and insights. Moreover, senior managers can elevate their teams with advanced DataOps Change Management strategies, making every step from theory to certification educational and transformational.
Webinar Summary: Introducing Open Source Data Observability
Christopher Bergh detailed the company’s release of new open-source tools to enhance DataOps practices by addressing common inefficiencies and errors within data teams. During the webinar, he demonstrated how these tools provide robust data observability and automated testing to improve productivity and reliability across data operations.
Why We Open-Sourced Our Data Observability Products
Why open source DataOps Observability and DataOps TestGen? Our decision to share full-featured versions of these products stems from DataKitchen’s long-standing commitment to enhancing productivity for data teams and promoting the use of automated, observed, and trusted tools. It aligns with our company’s philosophy of sharing knowledge and now software to inspire teams to implement DataOps effectively.
Webinar Summary: Agile, DataOps, and Data Team Excellence
Gil Benghiat, co-founder of Data Kitchen, began by explaining the overarching goal of achieving data team excellence, which involves delivering business value quickly and with high quality. He detailed data teams’ everyday challenges, such as balancing speed and quality, and the impact of Agile methodologies borrowed from software development practices.
Congratulations to the Karuna Team for their acquisition!
Today, Bristol Myers Squib (BMS) has fully acquired Karuna Therapeutics. We congratulate our customer on an amazing success.
Embracing Agility and Excellence in Data Operations: The DataKitchen DataOps Way
DataKitchen’s DataOps services are designed to empower teams at various stages of their DataOps adoption, providing a flexible and comprehensive roadmap to operational excellence
Key Success Metrics, Benefits, and Results for Data Observability Using DataKitchen Software
At DataKitchen, we would like to share some key success metrics of Data Observability Using DataKitchen DataOps Observability and DataOps TestGen.
ngx-toolkit, a new open-source project from DataKitchen
At DataKitchen, we use Angular and strive for well-tested and maintainable code. We’ve created three libraries that have helped accelerate Angular development in our software projects. We are proud today to present these to the open source community.
Why Not Hearing About Data Errors Should Worry Your Data Team
Just because you’re not hearing about data errors doesn’t mean they don’t exist. This silence could be a ticking time bomb for underlying issues yet to surface. Here are seven compelling reasons why you should care and be proactive, even when all seems well.